Déjouer le déverrouillage biométrique d’appareils mobiles par empreintes digitales : Une revue des méthodes applicables en contexte opérationnel policier
DOI :
https://doi.org/10.26034/la.cfs.2025.5554Mots-clés :
Biométrie, Dessin papillaire, Doigt artificiel, Déverrouillage, CapteurRésumé
Avec l’omniprésence des appareils mobiles, il devient primordial de sécuriser les données personnelles qu’ils contiennent. Les utilisateurs ont souvent recours à la biométrie, particulièrement à la reconnaissance par empreinte digitale, pour sécuriser leurs données. Cela représente toutefois un obstacle pour certaines opérations policières, particulièrement lorsque l’utilisateur est inconnu ou qu’il ne souhaite pas coopérer, puisqu’il devient alors difficile d’avoir accès aux traces numériques. Pour contourner ce problème, il serait possible de reproduire l’empreinte digitale de l’utilisateur et de la soumettre au capteur pour obtenir l’accès. Plusieurs techniques permettant la fabrication de doigts artificiels dans différents contextes ont d’ailleurs vu le jour, allant de l’utilisation de matériaux comme la gélatine et le silicone à l’impression 3D. Le présent article regroupe donc les différentes méthodes recensées dans la littérature pour reproduire un dessin papillaire. Ces méthodes, bien qu’efficaces dans un environnement contrôlé, présentent toutefois certains obstacles en lien avec les types de capteurs intégrés aux appareils mobiles et les matériaux utilisés pour la fabrication des doigts artificiels. Les limites et les contraintes de ces méthodes sont également mises en évidence, de même que certaines suggestions pour contrer ces obstacles.
Références
Akkerman, H., Peeters, B., Tordera, D., Van Breemen, A., Shanmugam, S., Malinowski, P., Maas, J., De Riet, J., Verbeek, R. et Bel, T. (2019). 71-1: Large-area optical fingerprint sensors for next generation smartphones. Dans. SID Symposium Digest of Technical Papers.
All3DP. (2023). The 7 Main Types of 3D Printing Technology. https://all3dp.com/1/types-of-3d-printers-3d-printing-technology/
Ametefe, D., Sarnin, S., Ali, D. et Zaheer, M. (2022). Fingerprint liveness detection schemes: A review on presentation attack. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 10(2), 217-240. https://doi.org/10.1080/21681163.2021.2012826
Apple. (2017). About Touch ID advanced security technology. https://support.apple.com/en-ca/HT204587#:~:text=And%20 Touch%20ID%20allows%20only,you%20must%20enter%20your%20password.
Arora, S. S., Jain, A. K. et Paulter, N. G. (2017). Gold fingers: 3D targets for evaluating capacitive readers. IEEE transactions on information forensics and security, 12(9), 2067-2077. https://doi.org/10.1109/TIFS.2017.2695166
Arthur, C. (2013). iPhone 5S fingerprint sensor hacked by Germany’s Chaos Computer Club. The Guardian. https://www.theguardian.com/technology/2013/sep/22/apple-iphone-fingerprintscanner-hacked
Bandey, H., Bleay, S., Bowman, V., Downham, R. et Sears, V. (2014). Fingermark visualisation manual. Home Office, London.
Beggin, R. (2016). Police Use Fingertip Replicas To Unlock A Murder Victim’s Phone. NPR Vermont Public https://www.npr.org/sections/alltechconsidered/2016/07/27/487605182/policeuse-fingertip-replicas-to-unlock-a-murder-victims-phone
Blommé, J. (2003). Evaluation of biometric security systems against artificial fingers.
Cao, K. et Jain, A. K. (2016). Hacking mobile phones using 2D printed fingerprints. Michigan State University, Tech. Rep. MSU-CSE-16-2.
Carvalho, R. et Tihanyi, N. (2021). Creating effective fingerprint artefacts: a cooperative and a non-cooperative method for bypassing capacitive and optical sensors with high success rate. Dans. 2021 International Carnahan Conference on Security Technology (ICCST).
Casey, E. (2011). Digital evidence and computer crime: Forensic science, computers, and the internet. Academic press.
Casula, R., Micheletto, M., Orrú, G., Marcialis, G. L. et Roli, F. (2022). Towards realistic fingerprint presentation attacks: The ScreenSpoof method. Pattern Recognition Letters. https://doi.org/10.1016/j.patrec.2022.09.002
Casula, R., Orrù, G., Angioni, D., Feng, X., Marcialis, G. L. et Roli, F. (2021). Are spoofs from latent fingerprints a real threat for the best state-of-art liveness detectors? Dans. 2020 25th International Conference on Pattern Recognition (ICPR).
Cellebrite. (2022). La référence pour l’accès et la collecte légale de données numériques. https://cellebrite.com/fr/cellebriteufed-fr/
Chambre des communes du Canada. (2021). Projet de loi C-370 - Loi modifiant le Code criminel (déverrouillage de dispositifs électroniques). https://www.parl.ca/DocumentViewer/fr/44-1/ projet-loi/C-370/premiere-lecture
Chen, Y. et He, Y. (2023). BRUTEPRINT: Expose Smartphone Fingerprint Authentication to Brute-force Attack. arXiv preprint arXiv:2305.10791.
Cherapau, I., Muslukhov, I., Asanka, N. et Beznosov, K. (2015). On the Impact of Touch {ID} on {iPhone} Passcodes. Dans. Eleventh Symposium On Usable Privacy and Security (SOUPS 2015).
Commission d’enquête sur la protection de la confidentialité des sources journalistiques. (2017). Commission d’enquête sur la protection de la confidentialité des sources journalistiques - Rapport. https://www.bibliotheque.assnat.qc.ca/DepotNumerique_v2/AffichageNotice.aspx?idn=89051
Engelsma, J. J., Arora, S. S., Jain, A. K. et Paulter, N. G. (2018). Universal 3D wearable fingerprint targets: advancing fingerprint reader evaluations. IEEE transactions on information forensics and security, 13(6), 1564-1578. https://doi.org/10.1109/TIFS.2018.2797000
Espinoza, M. et Champod, C. (2011). Risk evaluation for spoofing against a sensor supplied with liveness detection. Forensic science international, 204(1-3), 162-168. https://doi.org/10.1016/j.forsciint.2010.05.025
Espinoza, M., Champod, C. et Margot, P. (2011). Vulnerabilities of fingerprint reader to fake fingerprints attacks. Forensic science international, 204(1-3), 41-49. https://doi.org/10.1016/j.forsciint.2010.05.002
Frandroid. (2022). Vous êtes une grosse majorité à utiliser le lecteur d’empreintes pour déverrouiller votre smartphone. https://www.frandroid.com/produits-android/smartphone/1342461_lecteur-dempreintes-reconnaissance-faciale-schemacomment-deverrouillez-vous-votre-smartphone
Galbally-Herrero, J., Fierrez-Aguilar, J., Rodriguez-Gonzalez, J., Alonso-Fernandez, F., Ortega-Garcia, J. et Tapiador, M. (2006). On the vulnerability of fingerprint verification systems to fake fingerprints attacks. Dans. Proceedings 40th Annual 2006 International Carnahan Conference on Security Technology.
Galbally, J., Cappelli, R., Lumini, A., Gonzalez-de-Rivera, G., Maltoni, D., Fierrez, J., Ortega-Garcia, J. et Maio, D. (2010). An evaluation of direct attacks using fake fingers generated from ISO templates. Pattern Recognition Letters, 31(8), 725-732. https://doi.org/10.1016/j.patrec.2009.09.032
Gauthier, J. M. (2015). Cadre juridique de l’utilisation de la biométrie au Québec: sécurité et vie privée.
Ghiani, L., Yambay, D. A., Mura, V., Marcialis, G. L., Roli, F. et Schuckers, S. A. (2017). Review of the fingerprint liveness detection (LivDet) competition series: 2009 to 2015. Image and Vision Computing, 58, 110-128. https://doi.org/10.1016/j.imavis.2016.07.002
Goicoechea-Telleria, I., Garcia-Peral, A., Husseis, A. et Sanchez-Reillo, R. (2018). Presentation attack detection evaluation on mobile devices: Simplest approach for capturing and lifting a latent fingerprint. Dans. 2018 International Carnahan Conference on Security Technology (ICCST).
Goicoechea-Telleria, I., Liu-Jimenez, J., Quiros-Sandoval, H. et Sanchez-Reillo, R. (2017). Analysis of the attack potential in low cost spoofing of fingerprints. Dans. 2017 International Carnahan Conference on Security Technology (ICCST).
Goicoechea-Telleria, I., Sanchez-Reillo, R., Liu-Jimenez, J. et Blanco- Gonzalo, R. (2018). Attack potential evaluation in desktop and smartphone fingerprint sensors: can they be attacked by anyone? Wireless Communications and Mobile Computing, 2018. https://doi.org/10.1155/2018/5609195
Gonzalo, R. B., Corsetti, B., Goicoechea-Telleria, I., Husseis, A., Liu-Jimenez, J., Sanchez-Reillo, R., Eglitis, T., Ellavarason, E., Guest, R. et Lunerti, C. (2018). Attacking a Smartphone Biometric Fingerprint System: A Novice’s Approach. Dans. 2018 International Carnahan Conference on Security Technology (ICCST).
Grabham, D. (2022). Lecteurs d’empreintes digitales à l’écran : Comment ils fonctionnent et comparaison entre les lecteurs optiques et les lecteurs à ultrasons. Pocket-lint. https://www.pocket-lint.com/fr-fr/smartphones/actualites/huawei/146063-dans-les-lecteurs-dempreintes-digitalesdaffichage-comment-fonctionnent-ils/GrayShift. (2022). Introducing GrayKey. https://www.grayshift.com/graykey/
Husseis, A., Liu-Jimenez, J., Goicoechea-Telleria, I. et Sanchez- Reillo, R. (2019). A survey in presentation attack and presentation attack detection. Dans. 2019 International Carnahan Conference on Security Technology (ICCST).
Jain, A. K. et Kumar, A. (2012). Biometric recognition: an overview. Second generation biometrics: The ethical, legal and social context, 49-79.
Kanich, O., Drahanský, M. et Mézl, M. (2018). Use of creative materials for fingerprint spoofs. Dans. 2018 International Workshop on Biometrics and Forensics (IWBF).
Karampidis, K., Rousouliotis, M., Linardos, E. et Kavallieratou, E. (2021). A comprehensive survey of fingerprint presentation attack detection. Journal of Surveillance, Security and Safety, 2(4), 117-161. https://doi.org/10.20517/jsss.2021.07
Kauba, C., Debiasi, L. et Uhl, A. (2020). Enabling fingerprint presentation attacks: Fake fingerprint fabrication techniques and recognition performance. arXiv preprint arXiv:2012.00606. https://doi.org/10.48550/arXiv.2012.00606
Lee, H., Kim, S. et Kwon, T. (2017). Here is your fingerprint! Actual risk versus user perception of latent fingerprints and smudges remaining on smartphones. Dans. Proceedings of the 33rd Annual Computer Security Applications Conference.
Légis-Québec. (2024a). Loi sur l’accès aux documents des organismes publics et sur la protection des renseignements personnels (Art. 65, L.R.Q, chapitre A-21). https://www.legisquebec.gouv.qc.ca/fr/document/lc/a-2.1
Légis-Québec. (2024b). Loi sur l’accès aux documents des organismes publics et sur la protection des renseignements personnels (Art. 73, L.R.Q., chapitre A-21). https://www.legisquebec.gouv.qc.ca/fr/document/lc/a-2.1
Légis-Québec. (2024c). Loi sur l’accès aux documents des organismes publics et sur la protection des renseignements personnels. (Art. 54, L.R.Q., chapitre A-21). https://www.legisquebec.gouv.qc.ca/fr/document/lc/a-2.1
Macleod, J. (2017). Affordable counterfeit fingerprints: Investigating the potential forensic applications of 3D printing [Murdoch University].
Margot, P. (2014). Traçologie: la trace, vecteur fondamental de la police scientifique. Revue internationale de criminologie et de police technique et scientifique, 67(1), 72-97.
Maro, E. et Kovalchuk, M. (2018). Bypass Mobile Lock Systems with Gelatin Artificial Fingerprint. Int. J. Comput. Sci. Eng, 6(6), 32-36.
Matsumoto, T., Matsumoto, H., Yamada, K. et Hoshino, S. (2002). Impact of artificial «gummy» fingers on fingerprint systems. Dans. Optical Security and Counterfeit Deterrence Techniques IV.
McKenna, S. et Butler, M. (2016). Challenging USB fingerprint scanner protocol: a methodology using casting agents to capture digit and latent ridge detail to enable access. International Journal of Biometrics, 8(2), 83-96. https://doi.org/10.1504/IJBM.2016.077826
Micheletto, M., Orrù, G., Casula, R., Yambay, D., Marcialis, G. L. et Schuckers, S. (2023). Review of the Fingerprint Liveness Detection (LivDet) competition series: from 2009 to 2021. Handbook of Biometric Anti-Spoofing: Presentation Attack Detection and Vulnerability Assessment, 57-76. https://doi.org/10.1007/978-981-19-5288-3_3
Ministère de la Sécurité publique du Québec. (2024). Guide des pratiques policières - Arrestation et détention. https://cdn-contenu.quebec.ca/cdn-contenu/adm/min/securitepublique/publications-adm/publications-secteurs/police/approches-pratiques/guide_pratiques_policieres/GUI_pratiques_policieres_arrestation_detention.pdf
Ministre de la Justice du Canada. (2024a). Loi sur l’identification des criminels (Art. 2, L.R.C. (1985), ch. I-1. https://laws-lois.justice.gc.ca/fra/lois/i-1/page-1.html
Ministre de la Justice du Canada. (2024b). Loi sur la protection des renseignements personnels et des documents électroniques (Annexe 1, L.C. 2000, ch. 5). https://laws-lois.justice.gc.ca/fra/lois/P-8.6/page-7.html#h-407817
Ministre de la Justice du Canada. (2024c). Loi sur la protection des renseignements personnels et les documents électroniques (Art. 2, L.C. 2000, ch. 5). https://laws-lois.justice.gc.ca/fra/lois/P-8.6/page-1.html
Nayak, S. K., Pati, P., Sahoo, S., Nayak, S., Debata, T. et Bhuyan, L. (2019). Artificial finger with dental alginate impression material can fool the sensorof various finger print systems. Journal of Indian Academy of Forensic Medicine, 41(1), 2-6. https://doi.org/10.1007/978-981-19-5288-3_3
Peralta, D., Galar, M., Triguero, I., Paternain, D., García, S., Barrenechea, E., Benítez, J. M., Bustince, H. et Herrera, F. (2015). A survey on fingerprint minutiae-based local matching for verification and identification: Taxonomy and experimental evaluation. Information Sciences, 315, 67-87.
Ry, E. V. (2018). Creating 3D-artefacts for spoofing fingerprint readers[NTNU].
Saguy, M., Almog, J., Cohn, D. et Champod, C. (2022). Proactive forensic science in biometrics: Novel materials for fingerprint spoofing. Journal of Forensic Sciences, 67(2), 534-542. https://doi.org/10.1111/1556-4029.14908
Sandström, M. (2004). Liveness detection in fingerprint recognition systems.
Schultz, C. W., Wong, J. X. et Yu, H.-Z. (2018). Fabrication of 3D fingerprint phantoms via unconventional polycarbonate molding. Scientific reports, 8(1), 1-9. https://doi.org/10.1038/s41598-018-27885-1
Sousedik, C. et Busch, C. (2014). Presentation attack detection methods for fingerprint recognition systems: a survey. Iet Biometrics, 3(4), 219-233. https://doi.org/10.1049/iet-bmt.2013.0020
Stén, A., Kaseva, A. et Virtanen, T. (2003). Fooling fingerprint scanners-biometric vulnerabilities of the precise biometrics 100 SC scanner. Dans. Proceedings of 4th Australian Information Warfare and IT Security Conference.
Thalheim, L., Krissler, J. et Ziegler, P.-M. (2002). Body check: Biometric access protection devices and their programs put to the test. c’t-magazin für computertechnik.
Triggs, R. (2023). How fingerprint scanners work: Optical, capacitive, and ultrasonic explained. https://www.androidauthority.com/how-fingerprint-scanners-work-670934/
Van der Putte, T. et Keuning, J. (2000). Biometrical fingerprint recognition: don’t get your fingers burned. Dans Smart Card Research and Advanced Applications (p. 289-303). Springer. https://doi.org/10.1007/978-0-387-35528-3_17
Weatherbed, J. (2023). 10 years ago, Apple finally convinced us to lock our phones. The Verge. https://www.theverge.com/23868464/apple-iphone-touch-id-fingerprint-security-ten-yearanniversary
Wiehe, A., Søndrol, T., Olsen, O. K. et Skarderud, F. (2004). Attacking fingerprint sensors. Gjøvik University College, 200.
Wire, H. S. N. (2010). Japanese biometric border fooled by tape. https://www.homelandsecuritynewswire.com/japanese-biometricborder-fooled-tape
Yang, W., Wang, S., Hu, J., Zheng, G. et Valli, C. (2019). Security and accuracy of fingerprint-based biometrics: A review. Symmetry,11(2), 141.
Zafar, M. R. et Shah, M. A. (2016). Fingerprint authentication and security risks in smart devices. Dans. 2016 22nd International Conference on Automation and Computing (ICAC).
Téléchargements
Publié-e
Comment citer
Licence
(c) Tous droits réservés Marilyne Cloutier, Benoit Daoust, Maxime Bérubé 2025

Cette œuvre est sous licence Creative Commons Attribution 4.0 International.
Attribution — Vous devez créditer l'Œuvre, intégrer un lien vers la licence et indiquer si des modifications ont été effectuées à l'Œuvre. Vous devez indiquer ces informations par tous les moyens raisonnables, sans toutefois suggérer que l'Offrant vous soutient ou soutient la façon dont vous avez utilisé son Œuvre.
Pas de restrictions complémentaires — Vous n'êtes pas autorisé à appliquer des conditions légales ou des mesures techniques qui restreindraient légalement autrui à utiliser l'Œuvre dans les conditions décrites par la licence.
Les termes de la licence ne s'appliquent pas aux titulaires des droits d'auteur. La licence s'applique aux lecteur.trice.s et à la revue.