Le rôle des caractéristiques acquises en matière de traces de semelles
Une revue et discussion de littérature
DOI :
https://doi.org/10.26034/la.cfs.2025.6003Mots-clés :
interprétation, unicité, terminologie, caractéristiques accidentelles, Traces de souliersRésumé
À la suite d’une comparaison entre des traces et des empreintes de semelles, une étape cruciale concerne l’évaluation du poids à accorder aux observations, et plus particulièrement la valeur à accorder aux caractéristiques acquises. Cette étape d’évaluation est souvent peu balisée et ne s’appuie que rarement, pour ce qui est des caractéristiques acquises, sur des données empiriques concrètes.
Cet article propose une discussion critique de la littérature afin de présenter les avancées dans le domaine et de donner une vue d’ensemble des publications actuelles qui traitent spécifiquement des caractéristiques acquises des semelles. Le recours systématique à l’argument de l’unicité de ces caractéristiques pour justifier une identification est également discuté afin de rediriger le débat vers des questions forensiques jugées plus pertinentes. De même, la terminologie utilisée pour qualifier les caractéristiques acquises est examinée pour identifier les raccourcis fallacieux qui viennent corrompre la logique du débat dans ce domaine. Finalement, le cadre général de l’interprétation des traces de semelles ainsi que les connaissances actuelles concernant les caractéristiques acquises plus spécifiquement seront couverts. Cette contribution couvre autant les études sur l’occurrence des caractéristiques acquises que les recherches relatives aux divers facteurs et dépendances qui influent sur les caractéristiques acquises.
Références
Adair, T. W., Lemay, J., McDonald, A., Shaw, R. et Tewes, R. (2007). The Mount Bierstadt Study: An Experiment in Unique Damage Formation in Footwear. Journal of Forensic Identification, 57(2), 199‑205.
Aitken, C. G. G., Taroni, F. et Bozza, S. (2021). Statistics and the evaluation of evidence for forensic scientists (Third edition). Chichester West Sussex UK: John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119245438
Biedermann, A. et Taroni, F. (2006). Bayesian networks and probabilistic reasoning about scientific evidence when there is a lack of data. Forensic Science International, 157(2‑3), 163‑167. https://doi.org/10.1016/j.forsciint.2005.09.008
Bily, C. et Mathias, C. (2017). Ethylene Vinyl Acetate Outsoles and Acquired Characteristics. Journal of Forensic Identification, 67(4), 549‑564.
Bodziak, W. J. (2017). Forensic Footwear Evidence. Boca Raton, FL: CRC Press. https://doi.org/10.1201/b19479
Champod, C. et Biedermann, A. (2023). Overview and Meaning of Identification/Individualization. Dans M. M. Houck (éd.), Encyclopedia of Forensic Sciences (Third Edition, vol. 4, p. 53‑62). Oxford: Elsevier. https://doi.org/10.1016/B978-0-12-823677-2.00152-5
Champod, C. et Evett, I. W. (2001). A Probabilistic Approach to Fingerprint Evidence. Journal of Forensic Identification, 51(2), 101‑122.
Chaubert, S. (1998). Etude des caractéristiques accidentelles sur les traces de pas [Séminaire de 4ème année]. Institut de Police Scientifique et de Criminologie, Université de Lausanne.
Cole, S. A. (2009). Forensics without uniqueness, conclusions without individualization: the new epistemology of forensic identification. Law, Probability and Risk, 8(3), 233‑255. https://doi.org/10.1093/lpr/mgp016
Davis, R. J. et DeHaan, J. D. (1977). A Survey of Men’s Footwear. Journal of the Forensic Science Society, 17(4), 271‑285. https://doi.org/10.1016/s0015-7368(77)71161-2
Davis, R. J. et Keeley, A. (2000). Feathering of footwear. Science & Justice, 40(4), 273‑276. https://doi.org/10.1016/S1355-0306(00)71997-6
den Harder, M. (2019). Traces de semelles dans le sang : variations possibles pour une même source [Travail de Master]. Ecole des Sciences Criminelles, Université de Lausanne.
Evett, I. W., Lambert, J. A. et Buckleton, J. S. (1998). A Bayesian approach to interpreting footwear marks in forensic casework. Science & Justice, 38(4), 241‑247. https://doi.org/10.1016/S1355-0306(98)72118-5
Girod, A., Champod, C. et Ribaux, O. (2008). Traces de souliers. Lausanne: Presses polytechniques et universitaires romandes.
Hamburg, C. et Banks, R. (2010). Evaluation of the random nature of acquired marks on footwear outsoles [Présentation]. Impression and Pattern Evidence Symposium, Clearwater, FL. https://projects.nfstc.org/ipes/presentations/Hamburg_random-acquired-marks.pdf
Hammer, L. (2013). Footwear Marks. Dans J. A. Siegel, P. J. Saukko et M. M. Houck (éds.), Encyclopedia of Forensic Sciences (Second Edition, p. 37‑42). Amsterdam: Academic Press. https://doi.org/10.1016/B978-0-12-382165-2.00278-6
Hammer, L., Duffy, K., Fraser, J. et Daéid, N. N. (2013). A Study of the Variability in Footwear Impression Comparison Conclusions. Journal of Forensic Identification, 63(2), 205‑218.
Hicklin, R. A., McVicker, B. C., Parks, C., LeMay, J., Richetelli, N., Smith, M., Buscaglia, J., Perlman, R. S., Peters, E. M. et Eckenrode, B. A. (2022). Accuracy, reproducibility, and repeatability of forensic footwear examiner decisions. Forensic Science International, 339, 111418 (1‑16). https://doi.org/10.1016/j.forsciint.2022.111418
Hunter, J. (2013). The Variation in Pattern Size of Dynamic Footwear Test Impressions as a Result of Four Impression Methods and the Development and Persistence of Schallamach Waves on Footwear Outsoles [Master Thesis]. Centre for Forensic Science. University of Strathclyde, Glasgow.
Kaplan Damary, N., Mandel, M., Wiesner, S., Yekutieli, Y., Shor, Y. et Spiegelman, C. (2018). Dependence among randomly acquired characteristics on shoeprints and their features. Forensic Science International, 283, 173‑179. https://doi.org/10.1016/j.forsciint.2017.11.038
Kaplan-Damary, N., Mandel, M., Yekutieli, Y., Shor, Y. et Wiesner, S. (2022). Location distribution of randomly acquired characteristics on a shoe sole. Journal of Forensic Sciences, 67(5), 1801‑1809. https://doi.org/10.1111/1556-4029.15091
Kaplan-Damary, N., Mandel, M., Yekutieli, Y., Wiesner, S. et Shor, Y. (2020). Spatial modeling of randomly acquired characteristics on outsoles with application to forensic shoeprint analysis. arXiv: 1912.08272v2, 1‑33. https://doi.org/10.48550/arXiv.1912.08272
Keereweer, I. (2000). Guideline for Drawing Conclusions Regarding Shoeprint Examinations. Information Bulletin for Shoeprint/Toolmark Examiners – Proceedings of the 3rd European SP/TM Conference, 6(1), 47‑62.
Khan, K. et Carriquiry, A. L. (2023). Shining a Light on Forensic Black-Box Studies. Statistics and Public Policy, 10(1), 2216748 (1‑11). https://doi.org/10.1080/2330443X.2023.2216748
Kim, I.-J. (2016). Identifying shoe wear mechanisms and associated tribological characteristics: Importance for slip resistance evaluation. Wear, 360‑361, 77‑86. https://doi.org/10.1016/j.wear.2016.04.020
LeMay, J. (2013). Accidental Characteristics in a Footwear Outsole Caused by Incomplete Blending of Fillers in the Outsole Rubber. Journal of Forensic Identification, 63(5), 525‑530.
Lin, E.-T., DeBat, T. et Speir, J. A. (2022). A simulated crime scene footwear impression database for teaching and research purposes. Journal of Forensic Sciences, 67(2), 726‑734. https://doi.org/10.1111/1556-4029.14933
Liu, L., Wang, W. et Luo, Y. (2019). Foreign object held in recessed areas of shoe outsole as an acquired characteristic in footwear examination: A preliminary study. Forensic Science International, 304, 109949 (1‑10). https://doi.org/10.1016/j.forsciint.2019.109949
Liu, L., Wu, J., Luo, Y. et Lin, S. (2020). Reproducibility of Artificial Cut on Heel Area of Rubber Outsole. Journal of Forensic Sciences, 65(1), 229‑237. https://doi.org/10.1111/1556-4029.14148
Majamaa, H. et Ytti, A. (1996). Survey of the conclusions drawn of similar footwear cases in various crime laboratories. Forensic Science International, 82(1), 109‑120. https://doi.org/10.1016/0379-0738(96)01972-X
Margot, P. (2014). Traçologie: La trace, vecteur fondamental de la police scientifique. Revue Internationale de Criminologie et de Police Technique et Scientifique, 67(1), 72‑97.
McElhone, R. L., Meakin, G. E., French, J. C., Alexander, T. et Morgan, R. M. (2016). Simulating forensic casework scenarios in experimental studies: The generation of footwear marks in blood. Forensic Science International, 264, 34‑40. https://doi.org/10.1016/j.forsciint.2016.03.023
McLachlan, H. V. (1995). No two sets the same? Applying philosophy to the theory of fingerprints. The Philosopher: Journal of the Philosophical Society of England, 83(2), 12‑18.
Meester, L., Molenaar, J., Nuyens, M., Renzholc, Y. et van Winden, K. (2004). Catch them … if you can. D. Pik et V. Rottschäfer (éds.), Proceedings of the fourty-fifth European Study Group with Industry (February 17-21, 2003), Leiden (p. 57‑72).
Monico, I. (2005). Etude des caractéristiques acquises sous les semelles militaires [Séminaire de 4ème année]. Institut de Police Scientifique et de Criminologie, Université de Lausanne.
National Institute of Forensic Science Australia and New Zealand. (2017). An introductory guide to evaluative reporting. Australia New Zealand Policing Advisory Agency (ANZPAA). https://www.anzpaa.org.au/ArticleDocuments/357/An%20Introductory%20Guide%20to%20Evaluative%20Reporting.PDF.aspx
National Research Council. (2009). Strengthening forensic science in the United States: a path forward. Washington, DC: National Academies Press. https://www.ojp.gov/pdffiles1/nij/grants/228091.pdf
Page, M., Taylor, J. et Blenkin, M. (2011). Uniqueness in the forensic identification sciences—Fact or fiction? Forensic Science International, 206(1‑3), 12‑18. https://doi.org/10.1016/j.forsciint.2010.08.004
Park, S. et Carriquiry, A. (2020). An algorithm to compare two-dimensional footwear outsole images using maximum cliques and speeded-up robust feature. Statistical Analysis and Data Mining: The ASA Data Science Journal, 13(2), 188‑199. https://doi.org/10.1002/sam.11449
Park, S. et Carriquiry, A. (2021). Quantifying the similarity of 2D images using edge pixels: an application to the forensic comparison of footwear impressions. Journal of Applied Statistics, 48(10), 1833‑1860. https://doi.org/10.1080/02664763.2020.1779194
Park, S. et Carriquiry, A. (2022). The effect of image descriptors on the performance of classifiers of footwear outsole image pairs. Forensic Science International, 331, 111126 (1‑10). https://doi.org/10.1016/j.forsciint.2021.111126
Pasquier, J. (2018). Exploitation des traces de semelles dans la lutte contre la délinquance sérielle: Conception et apport d’une banque de données dans le cadre du renseignement forensique [Thèse de doctorat]. Ecole des Sciences Criminelles, Université de Lausanne. https://www.unil.ch/files/live/sites/esc/files/Fichiers%202019bis/The%CC%80se_Pasquier.pdf
Pasquier, J. (2023). A footwear marks database in Western Switzerland: A forensic intelligence success. Forensic Science International, 348, 111726 (1‑4). https://doi.org/10.1016/j.forsciint.2023.111726
PCAST. (2016). Report to the President - Forensic Science in Criminal Courts: Ensuring Scientific Validity of Feature-Comparison Methods. President’s Council of Advisors on Science and Technology, Washington DC. https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/PCAST/pcast_forensic_science_report_final.pdf
Petraco, N. D. K., Gambino, C., Kubic, T. A., Olivio, D. et Petraco, N. (2010). Statistical Discrimination of Footwear: A Method for the Comparison of Accidentals on Shoe Outsoles Inspired by Facial Recognition Techniques. Journal of Forensic Sciences, 55(1), 34‑41. https://doi.org/10.1111/j.1556-4029.2009.01209.x
Raymond, J. et Sheldon, P. (2015). Standardizing shoemark evidence - An Australian and New Zealand collaborative trial. Journal of Forensic Identification, 65(5), 868‑883.
Reidy, S., Harris, R., Gwinnett, C. et Reel, S. (2022). Planning and developing a method for collecting ground truth data relating to footwear mark evidence. Science & Justice, 62(5), 632‑643. https://doi.org/10.1016/j.scijus.2022.09.006
Reymond, J. (2010). Etudes des caractéristiques acquises sur deux dessins généraux de semelles de chaussures [Travail de Master]. Institut de Police Scientifique et de Criminologie, Université de Lausanne.
Richetelli, N., Bodziak, W. J. et Speir, J. A. (2019). Empirically observed and predicted estimates of chance association: Estimating the chance association of randomly acquired characteristics in footwear comparisons. Forensic Science International, 302, 109833 (1‑14). https://doi.org/10.1016/j.forsciint.2019.05.049
Richetelli, N., Hammer, L. et Speir, J. A. (2020a). Forensic Footwear Reliability: Part II - Range of Conclusions, Accuracy, and Consensus. Journal of Forensic Sciences, 65(6), 1871‑1882. https://doi.org/10.1111/1556-4029.14551
Richetelli, N., Hammer, L. et Speir, J. A. (2020b). Forensic Footwear Reliability: Part III - Positive Predictive Value, Error Rates, and Inter-Rater Reliability. Journal of Forensic Sciences, 65(6), 1883‑1893. https://doi.org/10.1111/1556-4029.14552
Richetelli, N., Nobel, M., Bodziak, W. J. et Speir, J. A. (2017). Quantitative assessment of similarity between randomly acquired characteristics on high quality exemplars and crime scene impressions via analysis of feature size and shape. Forensic Science International, 270, 211‑222. https://doi.org/10.1016/j.forsciint.2016.10.008
Richetelli, N. et Speir, J. A. (2022). Spatial frequency of randomly acquired characteristics on outsoles. Journal of Forensic Sciences, 67(5), 1810‑1824. https://doi.org/10.1111/1556-4029.15112
Rida, I., Bakshi, S., Proença, H., Fei, L., Nait-Ali, A. et Hadid, A. (2019). Forensic shoe-print identification: a brief survey. arXiv: 1901.01431v2, 1‑7. https://doi.org/10.48550/arXiv.1901.01431
Schallamach, A. (1953). Abrasion Pattern on Rubber. Rubber Chemistry and Technology, 26(1), 230‑241. https://doi.org/10.5254/1.3539800
Schallamach, A. (1958). Friction and Abrasion of Rubber. Wear, 1(5), 384‑417. https://doi.org/doi:10.1016/0043-1648(58)90113-3
Schmied, M. (2020). Etude de la variabilité interpersonne dans l’évaluation du rapport de vraisemblance lors de comparaison de traces de semelles [Travail de Master]. Ecole des Sciences Criminelles, Université de Lausanne.
Sheets, H. D., Gross, S., Langenburg, G., Bush, P. J. et Bush, M. A. (2013). Shape measurement tools in footwear analysis: A statistical investigation of accidental characteristics over time. Forensic Science International, 232(1–3), 84‑91. https://doi.org/10.1016/j.forsciint.2013.07.010
Shor, Y. et Weisner, S. (1999). A Survey on the Conclusions Drawn on the Same Footwear Marks Obtained in Actual Cases by Several Experts Throughout the World. Journal of Forensic Sciences, 44(2), 380‑384. https://doi.org/10.1520/JFS14468J
Shor, Y., Wiesner, S., Tsach, T., Gurel, R. et Yekutieli, Y. (2018). Inherent variation in multiple shoe-sole test impressions. Forensic Science International, 285, 189‑203. https://doi.org/10.1016/j.forsciint.2017.10.030
Sjerps, M. et Keereweer, I. (2001). A Likelihood Ratio View on the Interpretation of Shoeprint Evidence. Proceedings of the Fourth European Meeting for Shoeprint/Toolmark Examiners, 173‑183.
Skerrett, J., Neumann, C. et Mateos-Garcia, I. (2011). A Bayesian approach for interpreting shoemark evidence in forensic casework: Accounting for wear features. Forensic Science International, 210(1‑3), 26‑30. https://doi.org/10.1016/j.forsciint.2011.01.030
Smale, A. N. et Speir, J. A. (2023). Estimate of the random match frequency of acquired characteristics in a forensic footwear database. Science & Justice, 63(3), 427‑437. https://doi.org/10.1016/j.scijus.2023.04.007
Speir, J. A. (2018). A Quantitative Assessment of Shoeprint Accidental Patterns with Implications Regarding Similarity, Frequency and Chance Association of Features [Final Technical Report] no 2013-DN-BX-K043. West Virginia University. https://www.ojp.gov/pdffiles1/nij/grants/251522.pdf
Speir, J. A., Richetelli, N., Fagert, M., Hite, M. et Bodziak, W. J. (2016). Quantifying randomly acquired characteristics on outsoles in terms of shape and position. Forensic Science International, 266, 399‑411. https://doi.org/10.1016/j.forsciint.2016.06.012
Speir, J. A., Richetelli, N. et Hammer, L. (2020). Forensic Footwear Reliability: Part I - Participant Demographics and Examiner Agreement. Journal of Forensic Sciences, 65(6), 1852‑1870. https://doi.org/10.1111/1556-4029.14553
Spencer, N. A. et Murray, J. S. (2020). A Bayesian Hierarchical Model for Evaluating Forensic Footwear Evidence. arXiv: 1906.05244v2, 1‑44. https://doi.org/10.1214/20-AOAS1334
Stauffer, G. (2000). Modèle de Schallamach – Compréhension et description de ce phénomène d’usure et exploitation de cette information dans le cadre de l’examen des traces de semelles [Séminaire de 4ème année]. Institut de Police Scientifique et de Criminologie, Université de Lausanne.
Stern, H. S. (2017). Statistical Issues in Forensic Science. Annual Review of Statistics and Its Application, 4(1), 225‑244. https://doi.org/10.1146/annurev-statistics-041715-033554
Stone, R. S. (2006). Footwear Examinations: Mathematical Probabilities of Theoretical Individual Characteristics. Journal of Forensic Identification, 56(4), 577‑599.
Stoney, D. A. (1991). What made us ever think we could individualize using statistics? Journal of the Forensic Science Society, 31(2), 197‑199. https://doi.org/10.1016/s0015-7368(91)73138-1
SWGTREAD. (2013a). Range of Conclusions Standard for Footwear and Tire Impression Examinations. https://treadforensics.com/index.php/standards/u-s/standards-swgtread
SWGTREAD. (2013b). Standard for Terminology Used for Forensic Footwear and Tire Impression Evidence. https://treadforensics.com/index.php/standards/u-s/standards-swgtread
Swofford, H. et Champod, C. (2021). Implementation of algorithms in pattern & impression evidence: A responsible and practical roadmap. Forensic Science International: Synergy, 3, 100142 (1‑18). https://doi.org/10.1016/j.fsisyn.2021.100142
Tart, M. S., Adams, J., Downey, A. J., Goodyear, J. G. et Ohene, A. (1998). Feathering, Transient Wear Features and Wear Pattern Analysis: A Study of the Progressive Wear of Training Shoes Outsoles. Information Bulletin for Shoeprint/Toolmark Examiners – Proceedings of the 2nd European SP/TM Conference, 4(1), 51‑68.
The Forensic Science Regulator in partnership with the Chartered Society of Forensic Sciences and the Royal Statistical Society. (2021). Development of Evaluative Opinions: Codes of Practice and Conduct for Forensic Service Providers. Forensic Science Regulator, Brimingham. https://www.gov.uk/government/publications/development-of-evaluative-opinions
Toso, B. (1997). Evaluation des caractéristiques accidentelles sur les semelles de chaussures en fonction du temps et de l’utilisation [Séminaire de 4ème année]. Institut de Police Scientifique et de Criminologie, Université de Lausanne.
Vaucher, K. (2022). Traces de semelles poussiéreuses : Reproductibilité des caractéristiques acquises sur les surfaces lisses [Travail de Master]. Ecole des Sciences Criminelles, Université de Lausanne.
Venkatasubramanian, G., Hegde, V., Padi, S., Iyer, H. et Herman, M. (2021). Comparing footwear impressions that are close non-matches using correlation-based approaches. Journal of Forensic Sciences, 66(3), 890‑909. https://doi.org/10.1111/1556-4029.14658
Wang, X., Wu, Y. et Zhang, T. (2019). Multi-Layer Feature Based Shoeprint Verification Algorithm for Camera Sensor Images. Sensors, 19(11), 2491 (1‑20). https://doi.org/10.3390/s19112491
Wiesner, S., Shor, Y., Tsach, T., Kaplan-Damary, N. et Yekutieli, Y. (2020). Dataset of Digitized RACs and Their Rarity Score Analysis for Strengthening Shoeprint Evidence. Journal of Forensic Sciences, 65(3), 762‑774. https://doi.org/10.1111/1556-4029.14239
Willis, S., Mc Kenna, L., Mc Dermott, S., O’ Donnell, G., Barrett, A., Rasmusson, B., Höglund, T., Nordgaard, A., Berger, C., Sjerps, M., Molina, J. J. L., Zadora, G., Aitken, C., Lovelock, T., Lunt, L., Champod, C., Biedermann, A., Hicks, T. et Taroni, F. (2015). ENFSI Guideline for Evaluative Reporting in Forensic Science. European Network of Forensic Science Institutes. https://enfsi.eu/wp-content/uploads/2016/09/m1_guideline.pdf
Wilson, H. D. (2012). Comparison of the Individual Characteristics in the Outsoles of Thirty-Nine Pairs of Adidas Supernova Classic Shoes. Journal of Forensic Identification, 62(3), 194‑203.
Wyatt, J. M., Duncan, K. et Trimpe, M. A. (2005). Aging of Shoes and its Effect on Shoeprint Impressions. Journal of Forensic Identification, 55(2), 181‑188.
Yekutieli, Y., Shor, Y., Wiesner, S. et Tsach, T. (2016). Expert Assisting Computerized System for Evaluating the Degree of Certainty in 2D Shoeprints [Final Technical Report] no NIJ Task Plan 3211, Award Number: IAA-2009-DN-R-090. https://www.ojp.gov/sites/g/files/xyckuh241/files/media/document/250336.pdf
Zhang, H., Liu, L., Quan, Y. et Luo, Y. (2021). The specificity and reproducibility of general Schallamach pattern on heel part of rubber outsole. Journal of Forensic Sciences, 66(5), 1937‑1947. https://doi.org/10.1111/1556-4029.14749
Téléchargements
Publié-e
Comment citer
Licence
(c) Malou den Harder, Christophe Champod 2025

Cette œuvre est sous licence Creative Commons Attribution 4.0 International.
Attribution — Vous devez créditer l'Œuvre, intégrer un lien vers la licence et indiquer si des modifications ont été effectuées à l'Œuvre. Vous devez indiquer ces informations par tous les moyens raisonnables, sans toutefois suggérer que l'Offrant vous soutient ou soutient la façon dont vous avez utilisé son Œuvre.
Pas de restrictions complémentaires — Vous n'êtes pas autorisé à appliquer des conditions légales ou des mesures techniques qui restreindraient légalement autrui à utiliser l'Œuvre dans les conditions décrites par la licence.
Les termes de la licence ne s'appliquent pas aux titulaires des droits d'auteur. La licence s'applique aux lecteur.trice.s et à la revue.